UT Useful Formulas

Main ultrasonic parameters and their definition or relationship:

Feature	Formula	Remarks
Longitudinal (Compression) velocity	$V_L = \left[\frac{E(1-\nu)}{\rho(1+\nu)(1-2\nu)}\right]^{0.5}$; [m/s]	Where: $E = Modulus of elasticity (Young's modulus) [N/m2] \rho = Mass density [kg/m3]\nu = Poisson's ratio$
Transverse (shear) velocity	$V_T = \left[\frac{E}{2\rho(1+\nu)}\right]^{0.5} = \sqrt{\frac{G}{\rho}}$; [m/s]	Where: <i>G</i> = Shear modulus [N/m ²]
Frequency	$f = \frac{V}{\lambda}$; [Hz]	Where: $\lambda =$ Wave Length [m] V = Velocity [m/s]
Acoustic impedance	$Z = V\rho$; [kg/m ² s]	Where: V = Velocity [m/s] $\rho =$ Density [kg/m ³]
Near-field (circular)	$N_o = \frac{D^2 f}{4 V}$; [mm] for $\frac{D}{\lambda} > 10$	Where: D = Transduser diameter [mm] f = Transduser frequency [Hz] V = Sound velocity [mm/s]
Beam divergence- angle (circular)	$\sin\theta = \frac{1.2 V}{D f}$	Where: θ =Beam divergence angle fromcenterline to point where signalis at half strength
Reflection coefficient	$R = \frac{(Z_2 - Z_1)^2}{(Z_1 + Z_2)^2}$	Where: Z_1 = Acoustic impedance of Medium 1 Z_2 = Acoustic impedance of Medium 2
Transmission coefficient	$T = (1 - R) = \frac{4 Z_1 Z_2}{(Z_1 + Z_2)^2}$	Where: R = Reflection coefficient

Snell's law	$\frac{\sin \theta_1}{V_{L_1}} = \frac{\sin \theta_2}{V_{L_2}} = \frac{\sin \theta_3}{V_{S_1}} = \frac{\sin \theta_4}{V_{S_2}}$ $\bigvee_{L_1} \qquad \bigvee_{S_1} \qquad \bigvee_{L_1'}$ $\underbrace{\bigvee_{Material 1}}_{Material 2} \qquad \bigvee_{\theta_2} \qquad \bigvee_{L_2} \qquad \bigvee_{S_2}$	Where: $V_{L_1} \& V_{L_2}$ =the longitudinal wave velocitiesin the first and second materials,respectively $V_{S_1} \& V_{S_2}$ =the shear wave velocities in thefirst and second materials,respectively $\theta_1 \& \theta_2$ =the angles of incident andrefracted longitudinal waves,respectively $\theta_3 \& \theta_4$ =the angles of the convertedreflected and refracted shearwaves, respectively
Amplitude attenuation	$A = A_o e^{-\alpha Z}$	Where: A_o = Initial (unattenuated) amplitude α = Attenuation coefficient [dB/m] Z = Traveled distance [m]
Sound amplitude gain (or loss) in Decibel	$\Delta A = 20 \log \frac{A_2}{A_1} \qquad ; [dB]$	Where: A_1 = Amblitude of the first pulse A_2 = Amblitude of the second pulse
Distance to reflector or discontinuity (<i>normal or angle</i> <i>beam</i>)	$d = \frac{V t}{2}$	Where: V = Sound velocity (longitudinal or shear) [m/s] t = Time difference [s]
Surface Distance & Depth (1 st Leg)	SD = Sound Path $\times \sin \theta_R$ Depth (1 st leg) = Sound Path $\times \cos \theta_R$	Surface Distance
Surface Distance & Depth (2 nd Leg)	$SD = Sound Path \times \sin \theta_R$ $Depth (2^{nd} leg) =$ $2T - (Total Sound Path \times \cos \theta_R)$	T OR Sound Path Leg 1 Sound Path Leg 2 Depth
Skip Distance for weld inspection	Skip Distance = $2T \times \tan \theta_R$	T OR Sound Path Leg 7 Sound Path Leg 2

